·论著·

OPG 基因敲除小鼠骨质疏松情况的研究

程少丹 王拥军 唐德志 周泉 李晨光 周重建 施杞

中图分类号:R31 文献标识码:A 文章编号:1006-7108(2008)01-0016-04

摘要:目的 研究护骨素(Osteoprotegerin ,OPG)基因敲除纯合子小鼠(homozygous OPG knockout mice , OPG $^{-1-}$ mice)骨质疏松发生情况,为 OPG $^{-1-}$ 小鼠骨质疏松模型的应用提供依据。方法 非频密繁殖法获得 OPG $^{-1-}$ 小鼠 ,PCR 技术进行 OPG 基因表型鉴定。 16 周龄 OPG $^{-1-}$ 子代小鼠和 16 周 OPG 野生型小鼠各 10 只 采用双能 X 线骨密度测量仪(DEXA)测定全身骨密度(Bone mineral density ,BMD)、万能材料试验机测定股骨生物力学强度,骨组织形态计量学分析 L_s 椎体骨小梁结构;实时荧光定量 PCR检测 L_t 椎体骨组织中 BMP-2、Runx2 mRNA 表达水平。 结果 OPG^{-1-} 子代小鼠和亲代纯合子小鼠表现出相同的 OPG 基因缺失表型。与同龄野生型小鼠比较,16 周龄 OPG $^{-1-}$ 小鼠全身骨密度、股骨承受最大载荷、股骨结构刚度、腰椎椎体骨小梁数目、腰椎椎体骨小梁厚度显著下降(t=5.740,6.069,6.859 6.891,3.558,P<0.01),股骨承受破裂载荷、腰椎椎体骨小梁体积分数下降(t=3.157,3.329,P<0.05),股骨承受载荷后的最大位移、破裂位移显著增加(t=-3.868,-3.276,P<0.01);腰椎椎体骨小梁分离度增加(t=-2.575, P<0.05),腰椎椎体 Runx2 mRNA 表达升高(t=-3.738, P<0.05),腰椎椎体中 BMP-2 mRNA 表达升高不明显,差异无统计学意义(t=-1.589,P>0.05)。 结论 OPG $^{-1-}$ 小鼠表现出明显的骨质疏松,是一种理想的骨质疏松模式动物。

关键词:骨保护素;基因敲除;小鼠;骨质疏松;动物模型

Study on osteoporosis in offspring of OPG knockout mice CHENG Shaodan , WANG Yongjun , TANG Dezhi , et al . Laboratory of Bone Metabolic Disease , Institute of Spine , Shanghai University of Traditional Chinese Medicine , Shanghai 200032 , China

Abstract: Objective To study osteoporosis generating in the offspring of homozygous ($^{-/-}$) OPG knockout mice. Methods OPG $^{-/-}$ knockout mice were used to mate. Conditions of parental generation propagating and offspring developing were observed. Gene phenotype was identified with PCR. Total bone mineral density(BMD) were determined using dual energey X-ray absorprior(DEXA) , femur mechanical properties were evaluated using a three-point test , the sclerous tissues slices of lumbar vertebral body stained with picric acid-fuchsin were used to assess bone tissue morphometry static anylysis the gene expression of BMP-2, Runx2 in the L₄ vertebral body were assayed by Real time RT PCR in 10 16-week-old offspring of OPG $^{-/-}$ mice and 10 16-week-old wild typ4(+ / +) offspring of heterozygou4(- / +)OPG knockout mice. Results OPG $^{-/-}$ mice were viable and fertial the offspring could grow and develop normally and revealed the same OPG deletion with parental generation. Compared with OPG $^{+/+}$ mice , in OPG $^{-/-}$ mice , Total BMD , femur maximum load ,stiffness , lumbar vertebral body Tb. N ,Tb. Th decreased obviously(t = 5.740,6.069,6.859,6.891 , 3.558 , P < 0.01); femur break load , lumbar vertebral body Tb. Ar% decreased(t = 3.157, 3.329, P < 0.05); femur maximum elong ,break elong obviously increased (t = -3.868, -3.276, P < 0.01); lumbar vertebral body gene expression of Runx2 increased(t = -3.738, P < 0.05); lumbar vertebral body gene expression of BMP-2 increased, but the difference had not statistical significance(t = -1.589, P > 0.05).

基金项目:国家科技部国际合作重点资助项目(2006DFA32670) 国家杰出青年科学基金资助项目(30625043);国家教育部'新世纪优秀人才支持计划'资助项目(NCET-05-0418) 国家人事部留学回国人员科技活动择优资助项目(20053010);上海市医学领军人才支持计划资助项目(05YLJ018);上海市国际合作重点资助项目(55407070);上海市重点学科建设资助项目(T0303);上海市医学重点学科建设资助项目(05III027)

作者单位:200032 上海中医药大学脊柱病研究所骨代谢疾病研究室,上海中医药大学附属龙华医院骨伤科

通讯作者: 王拥军 ,Email: yjwang88@hotmail.com

Conclusions OPG^{-/-} mice appears severe osteoporosis and it can serve as an excellent osteoporosis animal model.

Key words: Osteoporotegerin; Gene knockout; Mice; Osteoporosis; Animal model

骨保护素(Osteoporotegerin ,OPG),又称为破骨细胞生成抑制因子(osteoclastogenesis inhibitory factor,OCIF),对破骨细胞生成具有重要的调控作用。OPG基因敲除小鼠由于破骨细胞生成过多,表现为骨质疏松^{12]}。本研究通过观察 OPG^{-/-} 小鼠全身骨密度、股骨生物力学性能、腰椎椎体骨组织形态计量学以及骨骼中诱导成骨的局部生长因子 BMP-2 及转录因子 Runx2 基因表达情况,探讨 OPG^{-/-} 小鼠骨质疏松发生的机制,为 OPG^{-/-} 小鼠骨质疏松动物模型的应用提供依据。

1 材料和方法

1.1 实验动物

SPF 级 合格证号 SCXK(沪)2003-0003]16 周龄 OPG^{-/-} 小鼠 6 只 (雌雄各半)及 OPG^{+/+} 雌性小鼠 10 只 购于上海南方模式生物中心。

1.2 主要试剂

基因组 DNA 提取试剂盒(Biodev,中国), Premix Ex Taq[™](TAKARA,日本), TRIZOL(Gibco,美国), Quant Reverse Transcriptase 逆转录试剂盒(TIANGEN,中国),高质纯化 DNA 胶回收试剂盒(GENMED,美国), 盐酸氯胺酮注射液(批准文号:H32022820,江苏恒瑞医药股份有限公司)。

1.3 主要仪器

DISCOVERY 双能 X 线骨密度仪(HOLOGIC 公司 美国),CMISA-99B 图像分析管理系统,万能材料试验机(岛津,日本),BECKMANDU800 紫外分光光度计(BECKMAN 公司,美国),GIS 凝胶图像处理系统,Rotor Gene 3000 荧光 PCR 仪(Rotor Gene 美国).

1.4 交配与繁殖

采用非频密繁殖法对 $OPG^{-/-}$ 小鼠进行繁殖。 雌鼠产仔哺乳 21 d 后,将母鼠移出,与雄鼠合笼进行下一次交配,子鼠雌雄分开, $3 \sim 5$ 只/笼饲养。 $OPG^{+/+}$ 小鼠饲养条件同上。

1.5 遗传性状鉴定

子鼠 1 月龄时 随机抽提雌、雄子代及亲代小鼠 各 1 只尾巴 DNA。 基因组 DNA 抽提按试剂盒说明操作 ,然后进行两步法 PCR 扩增。反应体系为 20 μ l ,扩增仪中 94 % 5 min ,再扩增(94 % 变性 10 s μ 5 退火 25 s μ 72 % 复性 40 s)30 个循环 ,最后在 72 % 下

延伸 5 min。用琼脂糖凝胶电泳 ,图像处理系统扫描 拍照。

1.6 全身骨密度测定

16 周龄雌性 OPG^{-/-} 与 OPG^{+/+} 小鼠各 10 只 "麻醉(氯胺酮 0.02 ml/只肌肉注射)后 ,用 DISCOVERY 双能 X 线骨密度仪测定全身 BMD。

1.7 股骨生物力学测定

小鼠断颈处死 取下其左侧股骨全长 置于万能材料试验机上进行三点弯曲试验 ,跨距为 1 cm ,加载速度 1 m/min。最大载荷、最大位移、破裂载荷、破裂位移直接输出 ,结构刚度由最大应力/最大位移计算得出。

1.8 L。 椎体硬组织切片及骨形态计量学分析

取下 L₅ 椎体 ,放入 10% 甲醛溶液中固定 24 h以上 ,然后乙醇逐级脱水 ,二甲苯透明 ,最后甲基丙烯酸甲酯包埋。硬组织切片 ,苦味酸-品红染色 ,采集完整的腰椎图像 ,病理图像分析仪测定骨组织面积(T. Ar),骨小梁面积(Tb. Ar),骨小梁周长(Tb. Pm),按黎氏法^[3]换算出骨小梁体积分数(Tb. Ar%),骨小梁数目(Tb. N),骨小梁厚度(Tb. Th)和骨小梁分离度(Tb. Sp)。

1.9 L₁ 椎体总 RNA 提取及 BMP-2、Runx2 mRNA 的表达

采用实时荧光定量 PCR 方法。 L_1 椎体分离后 参照文献 4 提取总 RNA 进行两步法扩增。PCR 反应体系为 $20~\mu l$, 扩增仪中 95° C 10~min ,再扩增(95° C 变性 20~s 62° C 退火 5~s , 72° C 复性 25~s)40 个循环 , 72° C延伸 10~min。制备标准曲线后 ,用 Rotor Gene 6.0 软件自动进行绝对定量分析 ,以每一样体所含目的基因的拷贝数和其 beta-actin 内参基因的拷贝数的比值表示目的基因的表达量。其引物序列及参照物 Beta-actin 引物序列由大连宝生物公司合成 ,引物序列见表 1。

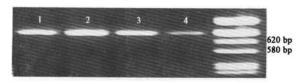
表 1 BMP-2、Runx2 mRNA、Beta-actin 引物序列

名称	FW	Re	bp
BMP-2	5'-GATCTGTACCGCAGGCACTC-3'	5'-TTCCCACTCATCTCTGGAAGTT-3'	140
Runx-2	$5'\text{-}CATTTGCACTGGGTCACACGTA-3'}$	5'-GAATCTGGCCATGTTTGTGCTC-3'	159
Beta-actin	5'-GATCTGTACCGCAGGCACTC-3'	5'-ATGTCACGCACGATTTICC-3'	218

1.10 统计学处理

数据以均数 \pm 标准差($\bar{x} \pm s$)表示 ,采用 SPSS

11.0 及 Excel 2000 统计软件分析,两组间数据比较应用两样本 t 检验。P < 0.05 为差异有统计学意义。


2 结果

2.1 OPG-'- 小鼠子代繁殖情况。

交配后,雌鼠正常受孕后 21 d 左右产仔。哺乳 21 d 后与母鼠分笼,小鼠可自由摄食、水,正常发育。 12 周以后,仔鼠生长发育稳定。

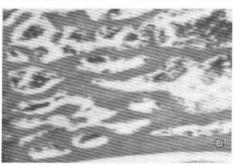
2.2 遗传性状鉴定结果

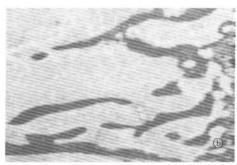
子代小鼠同亲代小鼠一样,表现为 OPG 基因缺失,出现同样的 620 bp 条带(图 1)。

1: 亲代雌鼠; 2: 亲代雄鼠; 3: 子代雌鼠; 4: 子代雄鼠 图 1 子代小鼠遗传形状 PCR 鉴定结果

2.3 全身骨密度检测结果

与 OPG^{+/+} 小鼠全身骨密度(0.0878 ± 0.00214) g/cm² 比较, OPG^{-/-} 小鼠全身骨密度(0.0722 ± 0.0016) g/cm² 显著降低,差异有统计学意义(ι = 5.740, P < 0.01)。


2.4 生物力学检测结果


与 OPG*/* 小鼠股骨的最大载荷(18.9760 ± 1.0137) N、破裂载荷(15.9467 ± 2.0667) N 比较, OPG-/- 小鼠承受的最大载荷(11.0880 ± 0.8135) N、破裂载荷(8.8533 ± 0.8809) N 显著降低,差异有统计学意义(t=6.069,3.157; P<0.05)。与 OPG*/* 小鼠股骨的最大位移(0.8171 ± 0.1284) mm、破裂位移(0.7440 ± 0.1481) mm 比较, OPG-/- 小鼠股骨发生的最大位移(1.9474 ± 0.2625) mm、破裂位移(1.9627 ± 0.3412) mm 明显增加,差异有统计学意义(t=-3.8680,-3.2760; P<0.01)。股骨结构刚度(最大载荷/最大位移),与 OPG*/* 小鼠(22.2358 ± 2.5051) N/mm 相比, OPG-/- 小鼠(6.2914 ± 0.6630) N/mm 显著下降,差异有统计学意义(t=6.859, P<0.01)。

2.5 L, 椎体硬组织切片染色及骨形态计量分析结果

OPG^{-/-}小鼠 L, 椎体骨小梁致密, 骨皮质较厚(图 2a), OPG^{-/-} 小鼠腰椎骨小梁严重稀疏, 骨皮质变薄(图 2b)。与 OPG^{-/-} 小鼠骨小梁数目、骨小梁

厚度、骨小梁体积分数[(26.8363 ± 1.2012) n/mm, 8.0493 ± 1.2659) μ m, (22.1605 ± 4.4349)%]比较, OPG^{-/-} 小鼠均明显下降[(11.2588 ± 1.7632) n/mm, (4.2385 ± 0.2407) μ m, (7.8299 ± 0.9048)%],差异有统计学意义(t = 6.891, 3.329, 3.558, P < 0.05)。骨小梁分离度,与 OPG^{-/-} 小鼠(29.5174 ± 2.8869) μ m 比较,OPG^{-/-} 小鼠(54.5465 ± 8.2764) μ m 明显增加,差异有统计学意义(t = -2.575, P < 0.05)。

a为 OPG^{-/-} 小鼠苦味酸 - 品红染色 ×40 b为 OPG^{-/-} 小鼠苦味酸 - 品红染色 ×40

图 2 小鼠腰椎硬组织切片

2.6 L, 椎体 BMP-2 和 Runx2 表达情况

 $OPG^{-/-}$ 小鼠 L₁ 椎体 BMP-2 表达量 (0.2648 ± 0.009)与 $OPG^{+/+}$ 小鼠 (0.2271 ± 0.0217)比较,上升,但差异没有统计学意义 (t = -1.589, P > 0.05); Runx2 表达量 (0.023110 ± 0.0015436)与 $OPG^{-/+}$ 小鼠 (0.0145 ± 0.0017)比较,明显上升,差异有统计学意义 (t = -3.738, P < 0.05)。

3 讨论

OPG 属于肿瘤坏死因子受体(tumor necrotic factor receptor, TNFR)超家族成员之一。由成骨/基质细胞以旁分泌方式发挥作用,作为一个"诱饵"受体,竞争性与细胞核因子-kB 受体活化因子配基(Receptor activator of nuclear factor kB ligand, RANKL)结合,封闭 RANKL与细胞核因子-kB 受体活化因子(Receptor activator of nuclear factor kB, RANK)的结合,

抑制破骨细胞分化、成熟。因此 ,RANKL/OPG 浓度比是调节破骨细胞分化、成熟的决定性因素。 OPG 浓度下降或基因缺失 ,将不能抑制 RANKL 与 RANK 的结合 ,最终导致破骨细胞生成过多而发生骨质疏松。

骨质疏松症(Osteoporosis)是人类最为常见的一种代谢性骨病,其发病率已经跃居各种常见病的第七位。原发性骨质疏松症是以骨量减少、骨组织显微结构退变为特征,以致骨的脆性增高而骨折危险性增加的一种全身代谢性骨病。目前骨质疏松研究常用的动物为大鼠、山羊等,最常用的造模方法为切除大鼠双侧卵巢模型^[5]。由于小鼠基因组结构、组织细胞学特征与人类相近,在动物实验研究中得到了广泛的使用。

1998 年 4 月 ,Mizuno 等 ¹¹和 Bucay 等 ²¹分别报 道 OPG 基因敲除纯合子小鼠可以存活 ,表现出严重的骨质疏松症。近年来 ,OPG ^{-/-} 小鼠作为动物模型在研究中得到应用的报道陆续发表 ⁶¹¹¹ ,国内研究中的应用刚刚起步 ¹²¹。

我们实验中发现,OPG-/- 小鼠可以繁殖,且子代能够成活,遗传性状同亲代一样,表现为 OPG 基因缺失。12 周龄以后,生长发育良好,但全身骨密度逐渐下降(另文发表),与同龄 OPG+/+ 小鼠比较,全身 BMD 及股骨承受载荷的能力明显下降。实验结果表明,OPG-/- 小鼠股骨最大位移(反映股骨脆性)较野生型明显增加,而结构刚度(反应股骨抗变形能力)明显下降。因此,OPG-/- 小鼠骨量减低,脆性增加,韧性下降,骨质疏松表现明显。

硬组织切片显示 ,OPG^{-/-} 小鼠 L_s 椎体骨小梁 严重丢失 ,骨皮质变薄。形态计量学分析表明 ,OPG^{-/-} 小鼠腰椎椎体骨小梁数目、骨小梁厚度、骨小梁体积分数下降 ,骨小梁分离度增加 ,从而进一步 从形态学方面反映了 OPG^{-/-} 小鼠发生了骨质疏松。

BMP-2 可以诱导成骨前体细胞分化为成熟的成骨细胞,促进骨形成,其表达水平反应了骨形成的能力。Runx2 位于 BMP-2 信号转导通路的下游,是成骨细胞形成的必备转录因子,同时也是成骨细胞发育程度的标志物之一。我们实验研究发现,OPG-/-小鼠较 OPG+/+ 小鼠 L₁ 椎体骨组织中的 BMP-2、Runx2 mRNA 表达上升,从基因水平表明 OPG-/-小鼠成骨能力增加,为一种高转换型骨质疏松,与其他研究结果一致^[3,13]。而 OPG 基因敲除通过什么途径影响 BMP-2 的信号转导通路,还有待进一步研究。

OPG-/- 小鼠随年龄增加而骨质疏松加重 相对

于其他各种诱导因素导致的继发性骨质疏松动物模型来说,具有全身骨质疏松发生情况稳定、动物本身未受外界因素干预等优点,是一种良好的原发性骨质疏松动物模型。该小鼠与老年性骨质疏松这种原发性动物模型比较,具有骨质疏松发生早(12周即可表现出明显的骨质疏松)的显著优点,并且可以繁殖。该小鼠一经建立,即可在短时间内扩大种群数量,为开展研究提供充足的实验动物,是一种理想的骨质疏松动物模型。

致谢 感谢上海第九人民医院骨关节中心汤亭亭教授、上海南 方模式生物中心王铸钢教授给本研究的帮助。

【参考文献】

- [1] Mizuno A, Amizuka N, Irie K, et al. Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor/osteoprotegerin. Biochem Biophys Res Commun 1998 247 510-615.
- [2] Bucay N Sarosi I "Dunstan CR "et al. Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev , 1998, 12:1260-1268.
- [3] Li XJ ,Harold MF Zhu SS ,et al. New view in blasical bone biology. Chinese Journal of Osteoporosis 2001 7 :152-166.
- [4] Li D, Su HC, Zhao JR, et al. Extraction of total RNA in bone tissue. Journal of the Fourth Military Medicine University, 1999, 20: 17-18.
- [5] Zhu YZ, Shi XL, Wu JM. Choice of osteoporosis animal model. Chinese Journal of Osteoporosis, 2006, 12:631-634.
- [6] Udagawa N ,Takahashi N ,Yasuda H ,et al . Osteoporotegerin produced by osteoblasts is an important regulator in osteocalst development and function. Endocinology 2000 .141 3478-3484.
- [7] Nakamura M ,Udagawa N ,Matsuura S ,et al . Osteoprotegerin regulates bone formation through a coupling mechanism with bone resorption . Endocinology , 2003 ,144 5441-5449 .
- [8] Sho K Masako I ,Yasunari T ,et al. Resorption of auditory ossicle and hearing loss in mice lacking osteoprotegenrin. Bone ,2006 ,39:414-419.
- [9] Yutaro A ,Kyoshi H ,Yasumoto M ,et al. Urinary γ-glutamyltransferase
 (GGT) as a potential mark of bone resorption. Bone ,2006 ,39 :1276-
- [10] Nakamichi K ,Udagawa N ,Kobavashi Y ,et al. Osteoprotegerin reduces the serum level of receptor activator of NF-kappaB ligand derived from osteoblasts , J Immunol 2007, 478: 192-200.
- [11] Masahiro S , Yuko N , Midori N , et al. New 19-nor-(20s)-1α , 25-dihydroxyvitamin D3 analogs strongly stimulate osteoclast formation both in vivo and in vitro , Bone 2007 A0 293-304.
- [12] Cheng SD , Tang DZ , Wang YJ , et al. Application of OPG in bone disease clinical research. J Spinal Surg 2007 5:174-177.
- [13] Xu Y ,Yang H , Qiao JO ,et al. High-bone-turnover osteoporosis and aortic calcification in OPG knockout mice. Prog Biochem Biophs , 2007 , 34: 260-266.

(收稿日期:2007-06-13)