·流行病学·

6~18岁中国女孩腰椎和前臂的骨矿物质含量和骨密度的研究

周迪军 谢辉 袁凌清 罗湘杭

中图分类号: R181.3 ;R814.4 文献标识码: A 文章编号: 1006-7108(2008)06-0416-04

摘要:目的 观察 455 名 $6\sim18$ 岁中国女孩的腰椎和前臂骨骨矿物质含量(bone mineral content, BMC) 骨密度(bone mineral density, BMD) 随年龄与发育状况的变化。方法 使用双能量 X 射线吸收测定术(Dual Energy X-ray Absorptiometry, DXA)测量腰椎(LS) 前后位 左前臂(半径+尺骨上,R+UUD)以及三分之一的(R+U 1/3)的 BMC和 BMD。结果 BMC和 BMD与年龄呈明显的相关性。在 LS、R+UUD和R+U 1/3部位 ,年龄、高度、重量与 BMC和 BMD之间有相当多的相互关系。在 LS、R+UUD和R+U 1/3部位 ,BMC和 BMD 随着青春期发育显著增加。结论 年龄、发育状况与位于腰椎和前臂骨的 BMC和 BMD有显著的正关系。BMC和 BMD的增长速度在腰椎和前臂之间差异有显著性。BMD和 BMC可以用来评价儿童和青少年的骨骼发育健康状况。

关键词:骨矿物质含量;骨密度;儿童;青少年

Study on bone mineral content and bone mineral density in lumbar spine and forearm of Chinese girls aged

6-18 years ZHOU Dijun , XIE Hui ,YUAN Lingqing ,et al . Institute of Metabolism and Endocrinology , The Second Xiangya Hospital , Central South University , Changsha 410011 ,China

Abstract: Objective To study the age-related bone mineral content (BMC), bone mineral density (BMD) and the tempo of growth in BMC and BMD at lumbar spine and forearm in 455 Chinese girls aged $6 \sim 18$ years. BMC and BMD at the anteroposterior lumbar spine (LS), the left forearm (radius + ulna ultradistal , R + UUD) and one-third region (R + U 1/3). **Method** BMC and BMD exhibiting different changes pattern with the age changes were measured using a dual-energy X-ray bone densitometer (DXA)d. **Results** There were significant correlations between age, height, weight and BMC and BMD at LS, R + UUD and R + U 1/3 sites. BMC and BMD increased significantly with increments in pubertal stages at LS, R + UUD and R + U 1/3 sites. **Conclusion** Our study showed that Tanner stage had a significant positive association with BMC and BMD of the lumbar spine and forearm. The differences were found in the growth tempo of BMC and BMD within a region and between the spine and forearm. Both BMD and BMC were recommended to evaluate the bone health in children and adolescent.

Key words: Bone mineral content; Bone mineral density; Children; Adolescents

大部分骨胳在青春期末或 20 岁之前能达到生长高峰¹¹。骨密度(BMD) 取决于某个部位的骨矿物质含量(BMC)。在儿童和青少年阶段 ,BMD 与年龄和生长紧密相关 ,BMC 的增长速度与年龄和部位也有明显关系^[1]。在青春期之前 ,下肢骨 BMC、BMD的增长比腰椎迅速。在青春期 ,腰椎 BMD、BMC 增

长加速,而下肢骨没有新的加速阶段。当疾病或者其他危险因素影响骨的新陈代谢时^[3], BMC 和 BMD 增长速度的改变直接影响不同阶段特别部位的峰值骨量(peak bone mass)。导致儿童和青少年普遍容易发生严重的前臂骨折。

本研究调查了 455 名 $6 \sim 18$ 岁中国女孩的腰椎和前臂骨 BMC、BMD 随年龄与发育状况的变化 ,观察中国女孩腰椎和前臂骨 BMC、BMD 的发展状况。

通讯作者:罗湘杭 Email xianghangluo@21cn.com

作者单位:410011 长沙,湖南长沙中南大学湘雅二医院代谢内分泌研究所(周迪军、谢辉、袁凌清、罗湘杭)湖南省岳阳市二医院内分泌科(周迪军).

1 材料和方法

1.1 对象

随机选择了 6~18 岁来自于长沙和湖南其他地区的 445 名女孩进行调查。 445 名女孩和他们的父母亲经过了详细的调查和筛选。曾感染过骨代谢疾病的个体在研究中被排除,包括肾、肝、甲状旁腺、甲状腺、糖尿病、高催乳素血症(hyperprolactinaemia),卵巢切除术(oophorectomy)类风湿关节炎、关节脊柱前移吸收障碍综合症(ankylosing spondylitis malabsorption syndromes)恶性肿瘤、血液疾病,以前有病理性骨折和1年内的骨折。另外有下列情况的个体也被排除:应用过糖皮质激素、雌激素、甲状腺激素、甲状旁腺激素、氟化物、二磷酸甘油酸、降钙素、噻嗪类利尿药、巴比妥酸盐,免疫抑制剂和维生素 D。身高和体重分别使用同一个标准分别测量。根据 Tanner 建立的标准,由内科医生根据女孩胸部和阴部发育来确定其青春期阶段^[4]。

该项研究得到了中南大学湘雅医学院伦理委员会的批准,并得到了所有研究个体及她们父母亲的同意。

1.2 实验方法

重复测量了 33 位个体中不同骨骼区域的 BMD 2 次 以评价该仪器的精确度。测量获得的数据偏差非常小。以均方根变化(RMSCV)的系数确定 ,变异系数分别为腰椎 0.86% ,R + UUD 1.35% ,R + U 1/3 1.03%。

1.3 统计学处理

所有资料使用 SPSS11.0 软件进行统计分析。结果以平均值和标准差表示 ,两均数用 t 检验。使用 ANOVA 的分析方法进行分析。

2 结果

2.1 临床特性

参加测试者的特性总结见表 1。这些测量平均 值代表了普通的中国女孩在儿童和青春期阶段的相 关指数^[5]。身高、体重和体重指数(BMI)逐渐增加 直到 14 岁。在 14 岁之后没有明显的增加。

表 1 不同年龄段被测个体身高、体重、体重指数

年龄(岁)	n	体重(kg)	身高(cm)	BMI(kg/m ²)
6.0	18	20.2 ± 3.2	114.2 ± 6.9	15.4 ± 1.2
7.0	17	24.4 ± 4.9 #	122.7 ± 6.0 #	16.2 ± 2.8
8.0	18	25.9 ± 3.8	126.5 ± 5.8 #	16.2 ± 1.6
9.0	12	31.5 ± 4.7 #	136.2 ± 5.8 #	16.9 ± 1.8
10.0	26	34.6 ± 7.0 #	140.3 ± 6.6 #	17.5 ± 2.5
11.0	21	37.7 ± 5.5 #	144.8 ± 6.6 #	17.9 ± 2.2
12.0	25	42.3 ± 7.9 [#]	151.1 ± 9.2 [#]	$18.4 \pm 2.3^{**}$
13.0	55	45.7 ± 6.5 #	155.0 ± 6.6 #	19.0 ± 2.3
14.0	42	51.9 ± 7.5	158.6 ± 4.1 #	$20.7 \pm 3.5^{**}$
15.0	57	51.6 ± 7.8	159.0 ± 5.3	$20.4 \pm 2.8^{**}$
16.0	39	52.5 ± 7.9	158.7 ± 4.9	$20.8 \pm 2.7^{**}$
17.0	30	53.2 ± 6.1	159.2 ± 5.3	$21.0 \pm 2.1^{**}$
18.0	43	52.7 ± 5.1	159.7 ± 5.3	$20.7 \pm 2.0^{**}$

注:与前一个年龄组比较, * P < 0.05; 与 6 岁年龄组比较, * P < 0.05

2.2 不同年龄段的 BMC 和 BMD 在 LS、R + UUD 和 R + U 1/3 的变化

按年龄分组测量的 BMC 和 BMD 在 LS、R + UUD 和 R + U 1/3 的值 ,用表 2、3 显示。在 LS、BMC 和 BMD 逐渐增加直到 10 岁 ,在 11 ~ 14 岁之间快速增加 ,BMC 在 15 ~ 18 岁之间逐渐增加 ,并且在 15 ~ 18 岁之间 ,BMC 的增加速度落后于 BMD 增加。它表明 BMC 和 BMD 随着年龄变化其变化趋势有所改变。BMC 和 BMD 在 R + UUD 和 R + U 1/3 的增加速度远远落后于腰椎。

表 2 不同年龄段骨矿物质含量

年龄(岁)	LS	R + UUD	R + U 1/3
6.0	14.76 ± 2.52	0.79 ± 0.10	1.37 ± 0.1
7.0	16.73 ± 3.14 #	0.90 ± 0.15 #	1.47 ± 0.20 #
8.0	17.72 ± 3.04	0.91 ± 0.13	1.55 ± 0.13 #
9.0	21.91 ± 2.24 #	1.07 ± 0.12	1.67 ± 0.15 #
10.0	26.61 ± 6.04 #	1.13 ± 0.16	1.88 ± 0.21 #
11.0	29.34 ± 7.07 #	1.25 ± 0.19 #	2.03 ± 0.30 #
12.0	36.06 ± 7.27 #	1.36 ± 0.24 #	2.17 ± 0.35 #
13.0	40.61 ± 7.90 #	1.49 ± 0.27	2.43 ± 0.31 #
14.0	45.32 ± 6.67 #	1.69 ± 0.27 #	2.59 ± 0.29 #
15.0	46.61 ± 6.40	1.74 ± 0.20 #	2.64 ± 0.26 #
16.0	48.99 ± 7.41 #	1.86 ± 0.22 #	2.78 ± 0.29 #
17.0	47.69 ± 5.39	1.96 ± 0.21	2.90 ± 0.25 #
18.0	48.61 ± 7.55	1.99 ± 0.23	2.90 ± 0.29

注 :LS :前后位腰椎($L_1 \sim L_4$) ;R + UUD :左前臂半径 + 尺骨外侧; RU 1/3 :左前臂三分之一区域 ;与前一个年龄组比较 ,# P < 0.05

2.3 发育进展阶段的 BMC 和 BMD 的变化

BMC 和 BMD 在发育进展阶段的值见表 4。 BMC 和 BMD 在 LS、R + UUD 和 R + U 1/3 部位随着 青春期阶段的增值都显著增加。它表明腰椎和前臂 的 BMC 和 BMD 紧密联系,且与发育阶段有显著的

正相关。

表 3 不同年龄段被测个体骨密度($g/cm^2 \bar{x} \pm s$)

年龄(岁)	LS	R + UUD	R + U 1/3
6.0	0.523 ± 0.052	0.254 ± 0.018	0.400 ± 0.028
7.0	0.541 ± 0.067 #	0.268 ± 0.029 #	0.411 ± 0.042 #
8.0	0.563 ± 0.055 #	0.268 ± 0.017	0.424 ± 0.035
9.0	0.617 ± 0.061 #	0.280 ± 0.037 #	0.454 ± 0.046 #
10.0	0.672 ± 0.079 #	0.287 ± 0.027	0.502 ± 0.041 #
11.0	0.700 ± 0.103 #	0.302 ± 0.032 #	0.517 ± 0.046
12.0	0.778 ± 0.129 #	0.296 ± 0.044	0.539 ± 0.060 #
13.0	$0.821 \pm 0.110^{\#}$	0.323 ± 0.046 #	0.592 ± 0.047 #
14.0	0.882 ± 0.085 #	0.358 ± 0.049 #	0.615 ± 0.046 #
15.0	0.883 ± 0.077	0.362 ± 0.039 #	0.624 ± 0.039 #
16.0	0.899 ± 0.098	0.377 ± 0.036 [#]	0.642 ± 0.041
17.0	0.886 ± 0.062	0.396 ± 0.038 #	0.653 ± 0.038 #
18.0	0.904 ± 0.075	0.402 ± 0.041	0.647 ± 0.041

注:与前一个年龄组比较,#P < 0.05

表 4 不同时期(Tanner stage)BMC/BMD测量值

项目	Tanner I	Tanner II	Tanner Ⅲ	Tanner IV	Tanner V
LS BMC	19.37 ± 5.76	29.08 ± 6.99 #	36.70 ± 7.82 #	40.78 ± 7.69 #	47.46 \pm 7.17 $^{\#}$
LS BMD	0.577 ± 0.085	0.700 ± 0.101 #	$0.782\pm0.127^{\#}$	0.820 ± 0.106	$0.887\pm0.848^{\#}$
R + UUD BM0	0.95 ± 0.18	1.26 ± 0.19 #	1.36 ± 0.23	1.48 ± 0.27 #	1.83 ± 0.26 #
R + UUD BMI	0.271 ± 0.028	0.302 ± 0.031 #	0.316 ± 0.043	0.322 ± 0.046	$0.377\pm0.043{}^{\#}$
R + U 1/3 BM	IC 1.55 ± 0.28	2.01 ± 0.30 #	2.18 ± 0.34	$2.39 \pm 0.30 ^{\#}$	2.74 ± 0.29 #
R + U 1/3 BM	$ID0.439 \pm 0.052$	0.515 ± 0.046 #	0.541 ± 0.060 #	0.591 ± 0.048 #	0.635 ± 0.041 #

2.4 BMD 与年龄、高度、重量的关系

如表 5 中所示,在 LS、R + UUD 和 R + U 1/3,年龄、身高、体重与 BMC 和 BMD 之间都有相当多的相互关系 3 个测量部位的 BMD 均随年龄增加而有所增加,以年龄为协变量进行协方差分析,结果显示,不同年龄的 BMD 差异均有统计学意义。总体上,当年龄相同时 3 个测量部位均以 R + U 1/3 的 BMD 最大。笔者用多元回归法对结果处理后发现,身高与体重指数对 BMD 无影响,需进一步研究。

表 5 年龄、身高、体重与 BMC/BMD 关系

市日	BMC			BMD		
坝口	LS	R + UUD	R + U 1/3	LS	R + UUD	R + U 1/3
年龄	0.846	0.864	0.865	0.787	0.756	0.869
身高	0.876	0.785	0.834	0.798	0.612	0.861
体重	0.867	0.868	0.856	0.825	0.726	0.845

3 讨论

研究结果显示,在 LS、R + UUD 和 R + U 1/3,年 龄与 BMC 和 BMD 相关。 BMC 和 BMD 在 LS、R + UUD 和 R + U 1/3 随着青春期的发育显著增加。

前臂骨发育早于腰椎是因为前臂的 BMC 和BMD 比腰椎的发育阶段要早,并且腰椎的 BMC 和BMD 与前臂骨的 BMC 和BMD 这一大的差异在发育后期阶段更明显。与此类似,在同一个部位不同时间 BMC 和BMD 的发展的速度也有区别。在骨骼尺

寸方面的更快增长,致使儿童骨头易碎。这能解释儿童大约在12岁到13岁时更易出现前臂骨折²³。

女孩的骨骼的尺寸、质量和密度有不同的发展速度可能与青春期发展有关^[6]。在生长期间 BMD的增加可能是因为骨骼尺寸、皮肤厚度、骨小梁数目或者厚度的增加。或者是骨的确实密度增加^[6]。我们目前研究显示在 14 岁和 18 岁之间 ,当腰椎 BMD 发生微小改变时 BMC 缓慢增长。它表明 BMC 和BMD 随着年龄变化有不同的发展趋势。因此建议BMC 和 BMD 都可用于评估儿童时期和青春期骨骼健康状况。

研究还发现中国女孩在发育期 腰椎的 BMD 低 于美国和欧洲女孩。这些结果值得关注。这显示 BMD 有种族的差别^{67]}。以前研究显示亚洲女性股 骨颈的 BMD ,乃至整个身体 BMD 和 BMC 明显低于 白色人种[8]。骨骼尺寸的差异和生活方式的差别可 以部分解释种族差别^{9]}。高加索女孩的 BMD 超过 亚洲女性归因于骨骼尺寸的差别。而研究已经表 明 即使考虑到骨骼尺寸的差异 ,人种 BMD 的差别 依然存在。另一原因可能是美国和欧洲儿童比中国 儿童或许有更占优势的饮食组成和营养保证。在美 国和欧洲 儿童有饮牛奶的习惯 ,但在中国 ,喝牛奶 的儿童所占的百分比相当低。中国女孩或许花费更 少的时间参加户外体育活动,因为他们必须承担更 大的学习及就业压力。这导致了骨群在青春期缓慢 增长。在客观上反映为中国女性 BMD 达峰时间 (PBMD)推迟而使小于34岁的中国女性的平均体重 和 BMI 低于高加索妇女[10]。

在本项研究过程中,我们使用双能量 X 射线吸收测定术(Dual Energy X-ray Absorptiometry ,DXA)测量 $6 \sim 18$ 岁的中国女孩的 BMC 和 BMD。并且发现腰椎和前臂骨的 BMC 和 BMD 的发展速度在同一个生长时期存在差别。即在 $14 \sim 18$ 岁女孩的腰椎中BMC 逐渐增加而 BMD 没有显著改变。基于这些发现提供的参考价值,我们推荐 BMC 和 BMD 都可用评估儿童和青少年的骨骼健康发育状况。

【参考文献】

[1] Matsukura T , Kagamimori S , Yamagami T ,et al. Reference data of forearm bone mineral density in healthy Japanese male and female subjects in the second decade based on calendar age and puberty onset: Japanese Population Based Osteoporosis (JPOS) study. Osteoporos Int , 2000 , 11(10): 858-865.

(下转第413页)

(上接第418页

Zhang XZ, Kalu DN, Erbas B, et al. The effect of gonadectomy on

bone size, mass and volumetric density in growing rats may be gender-, site-, and growth hormone-dependent. J Bone Miner Res 1999, 14(5): 802-809.

Bass S, Delmas PD, Pearce G, et al. The differing tempo of growth in bone size, mass, and density in girls is region-specific. J Clinical Invest, 1999, 104(6): 795-804.

Tanner JM. Physical growth and development. In: Forfar JO, Arnell

- CC, editors. Textbook of pediatrics. Second ed. Scotland, UK7 Churchill Livingstone; p. 249-303. Wang Y, Wang JQ. A comparison of international references for the assessment of child and adolescent overweight and obesity in different
- populations. Eur J Clin Nutr 2002, 56(10) 973-982. Bachrach LK, Hastie T, Wang MC, et al. Bone mineral acquisition in healthy Asian, Hispanic, Black and Caucasian youth: a

longitudinal study. J Clin Endocrinol Metab ,1999 , 84(12):4702-

- (1):73-78.

4712.

520-528.

- 87(7) 3056-3057. Wu XP, Liao EY, Huang G, et al. A comparison study of the reference curves of bone mineral density at different skeletal sites in native Chinese, Japanese, and American Caucasian women. Calcif
 - Tissue Int 2003, 73(2):12. (收稿日期:2007-11-25)

Nelson DA, Simpson PM, Johnson CC, et al. The accumulation of

whole body skeletal mass in third- and fourth-grade children: effects

of age, gender, ethnicity, and body composition. Bone, 1997, 20

El-Hajj Fuleihan Gh , Baddoura R , Awada H , et al . Low peak bone

mineral density in healthy Lebanese subjects. Bone ,2002 , 31(4):

Finkelstein JS, Lee ML, Sowers M, et al. Ethnic variation in bone

density in premenopausal and early perimenopausal women: effects of

anthropometric and lifestyle factors. J Clin Endocrinol Metab ,2002,