・论著・

骨膜联合骨髓间充质干细胞/乳酸乙醇酸共聚物修复 兔大段尺骨缺损的研究

张欣 陶周善 徐祝军 谢加兵 皖南医学院弋矶山医院创伤骨科,安徽 芜湖 241001

中图分类号: R-332 文献标识码: A 文章编号: 1006-7108(2017) 07-0864-06

摘要:目的 研究骨髓间充质干细胞(mesenchymal stem cells, MSCs)/乳酸乙醇酸共聚物(poly lactic-co-glycolic acid, PLGA)联合骨膜修复大段兔尺骨骨缺损的研究。方法 20 只成年新西兰大白兔随机分成 4 组: PLGA 组、PLGA/骨膜组、MSCs/PLGA 组和 MSCs/PLGA/骨膜组。所有动物构建双侧尺骨中段 15 mm 的长度节段性骨缺损,随后 PLGA 组、PLGA/骨膜组、MSCs/PLGA 组和 MSCs / PLGA/骨膜组分别植入 PLGA、PLGA/骨膜、MSCs/PLGA、MSCs/PLGA/骨膜生物材料。正常环境下饲养,在术后 6 w 和 12 w 时, 对缺损区域进行大体观察、影像学及组织学研究。结果 研究结果表明相同时间点 MSCs/PLGA/骨膜组 缺损修复效果明显优于其他组, MSCs/PLGA/骨膜植入组有最高的 X 线评分及缺损区最多骨缺损被修复(P < 0.05)。PLGA/骨膜、MSCs/PLGA 组在 X 线评分和骨量上差异无统计学意义(P > 0.05),但均明显高于 PLGA 组(P < 0.05)。结论 MSCs/PLGA 联合骨膜可以较好地修复大段兔尺骨骨缺损。

关键词:骨髓间充质干细胞;骨膜;骨缺损;骨再生;动物实验

Study on repairing of the ulna large segmental defect with combination of the periosteum and bone marrow mesenchymal stem cells in rabbits

ZHANG Xin, TAO Zhoushan*, XU Zhujun, XIE Jiabing

Department of Trauma Orthopedics, Yijishan Hospital Affiliated to Wannan Medical College, Wuhu 241001, China Corresponding author: TAO Zhoushan, Email: tzs19900327@126.com

Abstract: Objective To investigate the bone marrow mesenchymal stem cells/periosteum coated (lactic acid-glycolic acid, PLGA) in promoting the healing of large bone defect in the ulna in rabbits. **Methods** Twenty adult New Zealand rabbits were rand omly divided to PLGA group, PLGA/periosteum group, PLGA/MSCs group, and PLGA/MSCs/periosteum group. Bone defect of 15 mm segment in length was established in the middle of the ulnar in rabbits of each group, PLGA, PLGA/MSCs, and PLGA/MSCs/periosteum were implanted in PLGA group, PLGA/periosteum group, PLGA/MSCs group, and PLGA/MSCs, and PLGA/MSCs/periosteum group, respectively. After 6 and 12 weeks, the samples were evaluated with radiological and histological analysis. **Results** Compared with other treatment groups at each time point, a better bone quality, higher X-ray scores, and more bone mass were observed in PLGA/MSCs/periosteum group (P < 0.05). There was no significant difference (P > 0.05) between PLGA/periosteum group and PLGA/MSCs group were significantly higher than those in group PLGA (P < 0.05). **Conclusion** The combined use of bone marrow mesenchymal stem cells and periosteum-coated PLGA significantly promotes the healing of large ulnar bone defect in rabbits.

Key words: Mesenchymal stem cells; Periosteum; Bone defects; Regeneration; Animal experimentation

骨组织尽管拥有较好的自身修复能力,但是较 大的骨缺损很难通过骨组织自身的能力完成修复, 目前这类骨缺损的修复是临床的难点及研究的热点 之一^[1]。自体移植物在骨缺损修复中有许多优点, 尽管是骨缺损修复的"金标准",但是需要额外的手 术时间,供体部位的并发症和有限的骨组织限制其 优势^[24]。同时,同种异体的移植可能会增加感染的 风险。近年来,随着组织工程的进一步发展,人工材 料修复骨缺损成为一种可供选择的新思路。在大量

基金项目:皖南医学院中青年自然基金(WK2014F14)

^{*} 通讯作者: 陶周善, Email: tzs19900327@126. com

不断出现的各类新的组织工程支架中,聚乳酸-共-乙醇酸(poly lactic-co-glycolic acid, PLGA) 是一个美 国食品和药物管理局批准的具有良好生物降解性和 生物相容性的骨材料^[5],可以通过正常人体代谢途 径降解,对细胞和组织是安全的^[6]。骨髓间充质干 细胞(mesenchymal stem cells, MSCs)是多能细胞,它 可以被诱导分化成成骨细胞、软骨细胞、脂肪细胞 等^[7],它与生物支架复合已被证明可以明显改善支 架的整体骨传导功能^[8-9]。此外,骨和软骨的生长、 发育和再生依赖于骨膜,其中骨膜的成骨细胞和软 骨细胞,可通过膜内成骨的方式促进体内新骨形 成^[10]。鉴于此,笔者假设 MSC、骨膜及 PLGA 有较 好的成骨能力,联合使用可以充分发挥种子细胞、组 织支架及骨膜各自的优势,因此,笔者研究 MSCs/ PLGA /骨膜对激素诱导的骨质疏松兔尺骨骨缺损 修复的能力。

1 材料和方法

1.1 PLGA 支架的制备

使用致孔剂浸出法制作多孔 PLGA 支架(丙交 酯乙交酯的摩尔比 50:50,分子量 75000)^[11],使用 明胶微粒作为致孔剂。将同样份量的 PLGA 和明胶 加入锥形瓶,混合均匀,在搅拌状态下经过水蒸汽处 理搅拌均匀后,立即置于液氮中冷冻。完全凝固后, 转至 - 20 ℃的真空干燥器中,真空泵抽干、泡糖、干 燥,裁成 5 mm 直径、厚 1 mm、重 3 mg 的圆形支架, 消毒保存备用。

1.2 从兔骨髓提取 MSC 和培养

从兔骨髓来源间充质干细胞,它的分离和培养 的方法是按照以前文献报道的^[12]。简言之,骨髓间 充质干细胞来自抽吸的骨髓,给予梯度离心分离,并 接种到含有低葡萄糖 DMEM(Gibco)的培养瓶中,培 养基中含有 10% 的胎牛血清(Gibco)和 1% 的抗生 素(100 U/mL 青霉素和 100U/mL 链霉素)。培养 48 h后,除去培养基,更换新鲜培养基。细胞保持 在 37 ℃下在含有 5% CO₂ 的湿度适宜的培养箱中, 每两天更换一次培养基。当生长达到 80% ~90% 汇合时,贴壁细胞,用 0.25% 的胰蛋白酶-EDTA(乙 二胺四乙酸;Gibco)从培养瓶壁上分离下来,并再按 1:3的比例接种在前述的生长培养基中,以允许其继 续生长。第 3 代的骨髓间充质干细胞用于实验,同 种异体骨髓间充质干细胞用于在体内植入动物 实验。

1.3 细胞接种

PLGA 支架通过浸渍到 70% 的乙醇中进行灭 菌,然后用磷酸盐缓冲盐水漂洗几次。MSC 悬浮液 的密度为1×10⁷ cells/cm³,通过滴加体外培养扩增 的骨髓间充质干细胞悬液 50 μL 接种到 3D 双层支 架 PLGA 上。然后在细胞培养箱中(37 ℃下 5% 的 CO₂ 的湿润空气中)培养 2 h,以便使细胞附着在支 架材料上。复合支架放置在含有 2 mL 的新鲜培养 基的 35 mm 的培养皿中,并静置在细胞培养箱中过 夜,以备用于动物实验用。

1.4 动物及手术过程

20 只健康的雄性体重 2.5~3.0 kg 新西兰白兔 随机分成4组:PLGA组、PLGA/骨膜组、MSCs/ PLGA 组和 MSCs/PLGA/骨膜组,用于制作双侧尺骨 缺损模型。通过静脉注射 3% 的戊巴比妥钠(30 mg/kg) 对实验动物进行麻醉, 麻醉完成后, 常规消 毒铺巾,在双侧尺骨远端后外侧作3 cm 纵行切口。 钝性分离肌肉及其他的软组织并暴露骨组织。尺骨 缺损的长度为1.5 cm,使用高速锯下用生理盐水冲 洗的截骨方法,从截下的尺骨上完整剥离骨膜。随 后 PLGA 组、PLGA/骨 膜 组、MSCs/PLGA 组 和 MSCs/PLGA/骨膜组分别在缺损区植入 PLGA、 PLGA/骨膜、MSCs/PLGA 及 MSCs/PLGA /骨膜。手 术完成后认真止血,逐层缝合肌肉皮肤组织。在术 中、术后第一天,对每只兔子给予 40 万 U 青霉素肌 注,以防止感染,同时所有兔子肌肉注射地塞米松,3 mg/kg,每周2次,连续12w。在6w和12w两个时 间段,各取一半标本,手术组(n=5)并用10%的多 聚甲醛固定标本。

1.5 大体观察

观察动物术后的活动、食物摄入量和伤口愈合 情况。处死动物后,通过对标本的观察,查看骨修复 和骨痂组织的生长状态。

1.6 影像学检查

对术后 6 w 和 12 w 两个时间点的兔子前肢标 本进行串行 X 线透视检测。X 光片的结果由 3 位熟 悉骨形成,联合和重塑评价技术的实验人员进行单 盲评估,使用骨移植评分系统进行评估^[2]。来确定 在术后 6 w 和 12 w 的治疗效果,同时使用微观视角 2.2 软件(GE Healthcare)对数字化的数据进行分 析,对新形成的骨量体积和缺损的总体积均进行 评价。

1.7 组织学观察和组织形态学分析

影像学研究结束后,所有标本用10%的中性缓 冲福尔马林溶液固定72 h,EDTA 溶液脱钙,期间用 大头针轻戳标本,至针头可轻松刺入标本中提示脱 钙完成,脱钙时间约4w,脱钙完成后经过脱水、石 蜡包埋,包埋完成后以4μm厚度连续切片,所得切 片行苏木素-伊红染色(HE染色),观察各组材料与 缺损修复情况,使用图像分析软件 Image-Pro Plus 进 行图像分析,缺损的修复程度通过计算每个植入物 内骨组织面积的百分比来表示。

1.8 统计分析

应用 SPSS19.0 统计软件分析,数据用均数 ±标 准差表示,各组资料采用 One-way ANOVA 方差分析 进行检验,如果差异有统计学意义,若方差齐用 LSD 检验、方差不齐用 Dunnett T₃检验作两两比较。P < 0.05认为差异有统计学意义。

2 结果

2.1 大体观察

整个实验过程中,所有实验兔子饮食和行为正常,都存活了下来,并且没有明显的并发症,如切口 感染或皮肤坏死等。术后6w时,各组缺损区可见 部分骨组织形成,其中以MSCs/PLGA/骨膜组缺损 修复最佳;术后12w时,各组缺损进一步被修复,其 中PLGA组仍然可见大部分缺损存在,而其他组修 复效果明显优于PLGA组。研究发现MSCs/PLGA/ 骨膜组大部分缺损已经被修复,具体修复情况如图 1所示。

2.2 影像学分析

术后 6 w, PLGA 组在靠近桡骨的缺损部位只有 少量的骨组织形成(图 2A),而 PLGA/MSCs 组和 PLGA/骨膜组,在缺损两端及桡侧周围可见骨组织 形成(图 2B、2C), PLGA/MSCs/骨膜组骨缺损周围 有大量的骨和骨样组织形成(图2D)。术后12 w时, PLGA 组的缺损充满了骨组织(图 2E),而 PLGA/ MSCs组和 PLGA/骨膜组(图 2F、2G)中有一半以上 的缺损部位由骨组织填充: PLGA/MSCs/骨膜组(图 2H)中缺损几乎全部由骨组织填充,并达到骨性愈 合和骨重建。放射线评分结果分别见图 21、2J。 PLGA/MSCs/骨膜组在术后6w和12w评分均最高 (P < 0.05)。PLGA/MSCs 组和 PLGA/骨膜组的得 分显著高于 PLGA 组,差异有统计学意义(P < 0.05)。PLGA /MSCs 组和 PLGA/骨膜组的 X 线评 分差异无统计学意义(P>0.05),但是均高于 PLGA 组,且差异有统计学意义(P<0.05)。

2.3 组织学分析

术后 6 w 时, PLGA 组可以观测到少量新骨形

图1 大体观察术后6w(A~D)和12w(E~H)的兔 尺骨缺损。A、E:PLGA组;B、F:PLGA/MSCs组;C、 G:PLGA/骨膜组;D、H:PLGA/MSCs/骨膜组 Fig.1 Gross observation of rabbit ulnar defects at 6w (A-D) and 12w(E-H) after surgery. A, E: PLGA group; B, F: PLGA/MSCs group; C, G: PLGA/ periosteum group; D, H: PLGA/MSCs/periosteum group

成,大部分的缺损都由纤维组织和残留的支架填充 (图 3A),PLGA/MSCs 组可见部分分散的编织骨形 成(图 3B),PLGA/骨膜组在近桡骨侧可以看到丰富 的编织骨形成,并出现骨髓腔(图 3C),PLGA/ MSCs/骨膜组的整个缺损中可以见到编织骨的量进 一步增加,且更致密,骨髓腔形成(图 3D)。术后 12 w时,所有原尺骨两端均由新再生的骨连接,原 PLGA 支架大部分已经降低。PLGA 组外部区域可 见部分新生骨形成(图 3E)。PLGA/MSCs 组和 PLGA/骨膜组骨缺损的中心区可以观测到皮质骨形 成,然而周围仍是疏松的编织骨(图 3F、3G)填充; PLGA/MSCs/骨膜组缺损的两端可以观察到皮质 骨,而骨髓腔填充有丰富的编织骨(图 3H)。

2.4 组织形态计量学分析

术后 6 w, 在 PLGA 组中新骨形成的部分为 (6.6±1.5)%, PLGA/MSCs 组中为(9.4±1.1)%,

图 2 在术后 6 w(A ~ D)和 12 w(E ~ H)的放射学分析和各组的 Lane-Sand hu X 射线评分(I:6 w, J:12 w)。A、E: PLGA 组; B、F: PLGA/MSCs 组; C、G: PLGA/骨膜组; D、H: PLGA / MSCs/骨膜组。结果以平均值 ±标准差表示。*: 与其他组相比, P < 0.05; *: 与 PLGA 组相比, P < 0.05

Fig.2 Radiological analysis of postoperative 6 w (A to D) and 12 w (E to H) and Lane-Sand hu X ray score (I: 6w; J: 12w) in each group. A, E: PLGA group; B, F: PLGA/MSCs group; C, G: PLGA/periosteum group; D, H: PLGA/MSCs/ periosteum group. The results are expressed with mean \pm stand ard deviation. *P < 0.05, compare to other groups; *P < 0.05, compare to PLGA group

图 3 术后 6 w、12 w 时骨缺损部位再生的修复骨组织的组织学检测(b:骨组织;s:残余支架材料;m:骨髓;箭头:软骨细胞,HE × 20)

Fig. 3 Histological examination of the repaired bone tissue after bone defect regeneration at 6w and 12w (B: bone tissue; S: residual scaffold material; M: bone marrow; yellow arrow: cartilage cell, HE $\times 20$)

PLGA/骨膜组中为(11.6±3.3)%,均显著低于 PLGA/MSCs/骨膜组(23.5±2.7)%(图4A)(P<

0.05)。术后 12 w, PLGA/MSCs/骨膜组的新骨形成 面积增加至(74.3 ± 9.7)%, 显著高于 PLGA 组

Fig. 4 After 6 w and 12 w, the newly formed bone mass is expressed by the percentage of the new bone area and the area of the original bone defect area (histogram, mean \pm SD). *P < 0.05, compare to other groups; *P < 0.05, compared to PLGA group

(24.7±3.1)%、PLGA/MSCs 组(45.3±5.1)%和
PLGA/骨膜组(51.1±4.6)%(图 4B)(P < 0.05)。
研究发现在 PLGA/MSCs 组和 PLGA/骨膜组之间新
形成骨量差异无统计学意义(P > 0.05),而两组均
明显优于 PLGA 组(P < 0.05)。

3 讨论

本研究通过制作尺骨缺损,植入 PLGA、PLGA/ MSCs、PLGA/骨膜及 PLGA /MSCs/骨膜,实验结果 通过大体、X 线及 HE 评估,表明通过在缺损部位植 入多孔 PLGA 结合 MSCs 联合包裹自体骨膜的方 法,可以快速修复兔的尺骨节段性骨缺损。同时发 现骨膜联合骨髓间充质干细胞的再生效果优于单纯 的骨髓间充质干细胞。

MSCs 是多能细胞,其分化成骨源性的成骨细胞的能力是众所周知的。已有报告显示 MSCs 有 很强的诱导血管生成作用,它们通过旁分泌作用 来吸引宿主来源的血管内皮细胞聚集,同时诱导 新血管的形成增强了成骨细胞的浸润,进而推动 其随后的矿化和骨形成^[13-14]。因此,PLGA/MSCs 组比 PLGA 组新生更多的骨体积和更好的骨质量, 这与先前的研究一致^[14]。有趣的是,在 PLGA/ MSCs 中骨缺损的中心由骨组织填充,而外部区域 由纤维组织包裹。这种结果的原因可能是,骨髓 间充质干细胞主要附着在植人物的内侧,而移植 物的外侧主要缺乏骨髓间充质干细胞和其他成骨 诱导物,如骨膜。

骨膜由含有间充质干细胞的成骨层、含有成纤

维细胞和内皮细胞的纤维血管中间层、和含胶原的 外层组成,这些层可以促进成骨和血管化。此外,这 些层中包含一个胶原基质层,这对骨移植的成功是 至关重要的。以往的研究表明,带血管蒂的骨膜瓣 在合成支架材料上能够诱导骨生长^[15-16]。骨膜皮 瓣也已表明,能够促进人类同种异体移植物和自体 骨之间骨不连的修复^[17]。此外,骨膜可用于刺激和 提高在腱-骨界面的愈合^[18],也用于软骨再生^[19]。 因此,在本研究中,PLGA/骨膜组的新生骨组织的量 明显大于 PLGA 组。另外,其外部的缺损区域由骨 组织再生填充。MSCs 可能是通过软骨内和膜内成 骨形成为广大的愈合,并直接诱导血管生成,使移植 物血管化^[20]。因此,骨膜促进新骨形成和再生的作 用是通过提供间充质干细胞的来源,和通过促进血 管的生长和再生。

在本研究中, MSCs 和骨膜的组合显著增加了骨 形成和产生了较大体积的骨组织。在 PLGA/MSCs/ 骨膜组大部分达到了骨性愈合和骨重建。在先前的 研究中,结合脂肪干细胞、rhBMP-2 和骨膜,连同结 构性硬骨移植物,产生了大量的有良好血供的新 骨^[21]。这样的研究结果表明,为种植 MSCs 的合成 材料准备骨膜移植物的重要性。接种的细胞可以在 体内植入的早期阶段存活,由于这样的事实,膜状的 构造将通过体液扩散的方式提供营养物质以维持细 胞的活力^[22]。如果可用,骨膜将用作移植物或保存 在植入部位,以提高移植物的血管化和成骨。PLGA 组修复效果较差主要是由于缺乏成骨和移植物血管 化较少。但是,获取自体骨膜会造成供区并发症,骨 膜替代物为合成材料和同种异体移植物较差的血管 化提供了可供选择的解决途径。同种异体移植物和 合成材料可以作为骨膜替代物,从而有益于改善其 血管化^[23]。已有研究结果证明 MSCs 薄片都表达 血管源性和成骨细胞的基因,增强了骨愈合^[24]。

总之,本研究表明,植入复合有 MSCs 的 PLGA 和骨膜对节段性骨缺损的骨再生修复有协同效应, 并强调骨膜在此过程中发挥的关键作用。制作的骨 膜替代物对骨组织工程的成功是非常重要的。使用 骨膜包被 PLGA/MSCs 的复合材料可以明显促进兔 尺骨骨缺损的修复,在骨组织工程中具有广阔的应 用前景。

【参考文献】

- [1] Tao ZS, Zhou WS, Tu KK, et al. Treatment study of distal femur for parathyroid hormone (1-34) and β-tricalcium phosphate on bone formation in critical-sized defects in osteopenic rats. Journal of Biomaterials Applications, 2015, 30(4):8131-8136.
- [2] Feyen DA, Vand AF, Noort W, et al. Isolation of pig bone marrow-derived mesenchymal stem cells. New York: Springer, 2016:225.
- [3] Scott RW, Underhill TM. Methods and strategies for lineage tracing of mesenchymal progenitor cells. Methods in Molecular Biology, 2016, 1416:171.
- [4] Tao ZS, Zhou WS, Tu KK, et al. Effect exerted by teriparatide upon repair function of β -tricalcium phosphate to ovariectomised rat's femoral metaphysis defect caused by osteoporosis. Injuryinternational Journal of the Care of the Injured, 2015, 46(11): 2134.
- [5] Matsushita K, Morello F, Zhang Z, et al. Nuclear hormone receptor LXRα inhibits adipocyte differentiation of mesenchymal stem cells with Wnt/beta-catenin signaling. Laboratory Investigation, 2016, 96(2):230-238.
- [6] Boland EL, Shine R, Kelly N, et al. A review of material degradation modelling for the analysis and design of bioabsorbable stents. Annals of Biomedical Engineering, 2016,44(2):1-16.
- [7] Hui X, Wang Z, Zhang L, et al. Development of an angiogenesispromoting microvesicle-alginate-polycaprolactone composite graft for bone tissue engineering applications. Peerj, 2016, 4(1); 2040.
- [8] Utech S, Boccaccini AR. A review of hydrogel-based composites for biomedical applications: enhancement of hydrogel properties by addition of rigid inorganic fillers. Journal of Materials Science, 2016, 51(1):271-310.
- [9] Jeon OH, Panicker LM, Lu Q, et al. Human iPSC-derived osteoblasts and osteoclasts together promote bone regeneration in 3D biomaterials. Scientific Reports, 2016, 26(6):26761.
- [10] Stoddart MJ, Grad S, Eglin D, et al. Cells and biomaterials in cartilage tissue engineering. Regenerative Medicine, 2016, 4(1): 81-98.

- [11] Nasef A, Ashammakhi N, Fouillard L. Immunomodulatory effect of mesenchymal stromal cells: possible mechanisms. Regenerative Medicine, 2016,3(3):531-546.
- [12] Al-Khaldi A, Eliopoulos N, Martineau D, et al. Postnatal bone marrow stromal cells elicit a potent VEGF-dependent neoangiogenic response in vivo. Gene Therapy, 2003, 10 (8): 621-629.
- [13] Kinnaird T, Stabile E, Burnett MS, et al. Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation, 2004, 109 (12): 1543-1549.
- [14] Yoon SJ, Park KS, Kim MS, et al. Repair of diaphyseal bone defects with calcitriol-loaded PLGA scaffolds and marrow stromal cells. Tissue Eng, 2007, 13(5): 1125-1133.
- [15] Vögelin MDE, Jones NF, Lieberman JR, et al. Prefabrication of bone by use of a vascularized periosteal flap and bone morphogenetic protein. Plastic & Reconstructive Surgery, 2002, 109(109):190-198.
- [16] Choudry UH, Bakri K, Moran SL, et al. The vascularized medial femoral condyle periosteal bone flap for the treatment of recalcitrant bony nonunions. Annals of Plastic Surgery, 2008, 60 (2):174-180.
- [17] Chang CH, Chen CH, Su CY, et al. Rotator cuff repair with periosteum for enhancing tendon-bone healing: a biomechanical and histological study in rabbits. Knee Surgery Sports Traumatology Arthroscopy, 2009, 17(12):1447-1453.
- [18] Grote K, Petri M, Liu C, et al. Toll-like receptor 2/6-dependent stimulation of mesenchymal stem cells promotes angiogenesis by paracrine factors. European Cells & Materials, 2013, 26(4): 66-79.
- [19] Zhang X, Xie C, Lin AS, et al. Periosteal progenitor cell fate in segmental cortical bone graft transplantations; implications for functional tissue engineering. Journal of Bone & Mineral Research the Official Journal of the American Society for Bone & Mineral Research, 2005, 20(12);2124.
- [20] Runyan CM, Jones DC, Bove KE, et al. Porcine allograft mand ible revitalization using autologous adipose-derived stem cells, bone morphogenetic protein-2, and periosteum. Plastic & Reconstructive Surgery, 2010, 125(5):1372-1382.
- [21] Urquia Edreira ER, Hayrapetyan A, Wolke JG, et al. Effect of calcium phosphate ceramic substrate geometry on mesenchymal stromal cell organization and osteogenic differentiation. Biofabrication, 2016, 8(2):25006.
- [22] Petrochenko P, Narayan RJ. Novel approaches to bone grafting: porosity, bone morphogenetic proteins, stem cells, and the periosteum. Journal of Long-Term Effects of Medical Implants, 2010, 20(4):303-315.
- [23] Nakamura A, Akahane M, Shigematsu H, et al. Cell sheet transplantation of cultured mesenchymal stem cells enhances bone formation in a rat nonunion model. Bone, 2010, 46(2):418-24.
- [24] Gnecchi M, Danieli P, Malpasso G, et al. Paracrine mechanisms of mesenchymal stem cells in tissue repair. Methods in Molecular Biology, 2016, 1416:123.

(收稿日期: 2017-01-20;修回日期: 2017-02-16)