用生物信息学分析预测绝经后骨质疏松症核心基因与互作miRNA的研究
Prediction of key coding genes and interactive miRNAs in postmenopausal osteoporosis using bioinformatics analysis
  
DOI:10.3969/j.issn.1006-7108.2018.10.002
中文关键词:  骨质疏松,绝经后  生物信息学  蛋白互作网络  核心基因  微小核糖核酸
英文关键词:osteoporosis, postmenopausal  bioinformatics  protein-protein interaction network  key genes  micro-ribonucleic acid
基金项目:国家自然科学基金(81573874)
作者单位
柴毅 谭峰 樊巧玲* 南京中医药大学江苏 南京 210023 
摘要点击次数: 1533
全文下载次数: 868
中文摘要:
      目的 揭示参与绝经后骨质疏松症(postmenopausal osteoporosis,PMOP)生理病理过程的核心基因,并预测可能与之相互作用的微小核糖核酸(micro-ribonucleic acid,miRNA)。方法 选取NCBI基因表达综合数据库基因芯片GSE57273,应用 GEO2R和Morpheus分析软件获得差异基因(differentially expressed genes,DEGs),并通过DAVID(Database for Annotation,Visualization and Integrated Discovery)进行功能富集分析。应用STRING(Search Tool for the Retrieval of Interacting Genes)、Cytoscape和MCODE(Molecular Complex Detection)软件建立蛋白相互作用网络计算DEGs的各个连接度并分析网络集簇模块。由CyTargetLinker预测与核心基因互作的miRNA。结果 本研究共获得841个DEGs,其功能主要富集于基因表达过程,细胞大分子生物合成过程等。蛋白相互作用网络共包含523个节点与2026条连线。本研究列出了前3个集簇模块,同时筛选出10个核心基因:HSP90AA1、EP300、SMARCA2、RANBP2、ASH1L、EIF4E、PTEN、CNOT6L、RPL7、KRAS,并预测出37个miRNA可与其中7个核心基因靶向性相互作用。结论 核心基因与其相互作用的miRNA的发现可能有助于了解PMOP的病理机制,或为药物的开发提供治疗靶点。同时,通过对核心基因富集功能的鉴定为PMOP建立新的科学假说提供依据。
英文摘要:
      Objective This study aimed to identify core genes associated with postmenopausal osteoporosis (PMOP) and to predict interactive micro-ribonucleic acids (miRNAs). Methods Select NCBI gene expression comprehensive database gene chip GSE57273, the differentially expressed genes (DEGs) were picked using GEO2R tool from the Gene Expression Omnibus (GEO) database and Morpheus. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed for DEGs using the Database for Annotation, Visualization and Integrated Discovery (DAVID). Then, Cytoscape, Search Tool for the Retrieval of Interacting Genes (STRING) and Molecular Complex Detection (MCODE) were used to visualize protein-protein interaction (PPI) of these DEGs. Prediction of miRNA-gene regulatory modules was performed to build new research hypotheses using CyTargetLinker. Results 841 DEGs were obtained. GO terms and pathways were found enriched in DEGs, including gene expression, cellular macromolecule biosynthetic process, RNA metabolic process, pathways in cancer, viral carcinogenesis, focal adhesion, rap1 signaling pathway and protein processing in endoplasmic reticulum. PPI network was developed with 523 nodes and 2026 edges. Three important modules were identified from PPI network. 10 genes were selected as core genes because of high degrees, including HSP90AA1, EP300, SMARCA2, RANBP2, ASH1L, EIF4E, PTEN, CNOT6L, RPL7 and KRAS. Meanwhile, 37 miRNAs targeted with seven key genes were provided by CyTargetLinker. Conclusion The discovery of key genes and miRNAs might help to understand the pathophysiology of PMOP or provide therapeutic targets for the development of drugs. At the same time, it provides a basis for establishing new scientific hypotheses of PMOP through identifying the enrichment function of core genes.
查看全文  查看/发表评论  下载PDF阅读器
关闭
function PdfOpen(url){ var win="toolbar=no,location=no,directories=no,status=yes,menubar=yes,scrollbars=yes,resizable=yes"; window.open(url,"",win); } function openWin(url,w,h){ var win="toolbar=no,location=no,directories=no,status=no,menubar=no,scrollbars=yes,resizable=no,width=" + w + ",height=" + h; controlWindow=window.open(url,"",win); } &et=14179CEE1F58C8306C77E13D2FDE0487FB3DD7C7152262F613BD7BF4F22DD0CA5197E4E8951418B7F56DBC676BFEE9744AC1A01F7055DDAB1F722576BCE09969F1659D18EDC56B6A349DB9E77469FF130063CF3308F1DB4DE48627A4E57C49BEA950E5023E9B906B6A4AFBF618D1A00A7638BEBE975DBE03&pcid=A9DB1C13C87CE289EA38239A9433C9DC&cid=527A01A248DACB72&jid=CA678592D11E309E8E3FB3B2BFE9BE1A&yid=EA357AD73C8E13BC&aid=2354056DD48CBB45F59632D415F1BD47&vid=&iid=F3090AE9B60B7ED1&sid=A1CD1DC26CC35415&eid=F82BA45C3E48287D&fileno=201810002&flag=1&is_more=0"> var my_pcid="A9DB1C13C87CE289EA38239A9433C9DC"; var my_cid="527A01A248DACB72"; var my_jid="CA678592D11E309E8E3FB3B2BFE9BE1A"; var my_yid="EA357AD73C8E13BC"; var my_aid="2354056DD48CBB45F59632D415F1BD47";