身体成分对绝经后女性骨密度和骨骼肌量的影响
Effects of body composition on bone mineral density and skeletal muscle mass in postmenopausal women
  
DOI:10.3969/j.issn.1006-7108.2022.07.004
中文关键词:  绝经后女性  身体成分  骨密度  骨质疏松  肌少症
英文关键词:postmenopausal women  body composition  bone mineral density  osteoporosis  sarcopenia
基金项目:国家自然科学基金面上项目(31570976);广州市科技计划产学研协同创新重大专项(201604020148)
作者单位
赵胜利1 莫小毅1 温振兴1 张晓艳2 陈柏龄1* 1.中山大学附属第一医院脊柱外科广东 广州 510080 2.中山大学公共卫生学院广东 广州 510080 
摘要点击次数: 715
全文下载次数: 0
中文摘要:
      目的 基于双能X线骨密度仪测量的身体成分分析,探讨影响绝经后女性骨密度和骨骼肌量的共同因素,为绝经后骨质疏松和肌少症的协同防治提供思路。方法 纳入2015年1月至2020年10月在中山大学附属第一医院进行身体成分分析的171例绝经后女性,根据全身骨密度和相对骨骼肌肉指数(relative skeletal muscle index,RSMI)分为正常组(T值≥-1且RSMI>5.45 kg/m2)、肌少组(T值≥-1且RSMI≤5.45 kg/m2)、骨量异常组(T值<-1且RSMI>5.45 kg/m2)和肌少/骨量异常组(T值<-1且RSMI≤5.45 kg/m2)。采用单因素方差分析比较4组一般资料和身体成分差异,Pearson相关分析研究身体成分与骨密度和RSMI的相关性,多元线性回归分析探索影响骨密度和RSMI的共同因素。结果 4组在体脂率(percent body fat,PBF)、脂肪量(fat mass,FM)、脂肪指数(fat mass index,FMI)、瘦组织(lean mass,LM)、瘦组织指数(lean mass index,LMI)、骨矿盐含量(bone mineral content,BMC)、Android/Gynoid区域脂肪比率和休止代谢率(resting metabolic rate,RMR)的整体比较中差异均有统计学意义(P<0.05)。调整混杂因素后,PBF、FM、FMI与骨密度和RSMI呈不同程度负相关,LM、LMI、BMC、RMR与骨密度和RSMI呈正相关。多元线性回归显示高PBF、低LM和低BMC是骨密度和RSMI的共同危险因素。结论 绝经后女性骨密度与骨骼肌量变化密切相关,针对影响二者的共同危险因素采取干预措施可能有利于绝经后骨质疏松和肌少症的协同防治。
英文摘要:
      Objective To explore the common factors affecting bone mineral density (BMD) and skeletal muscle mass in postmenopausal women based on the analysis of body composition measured using dual energy X-ray absorptiometry, so as to provide ideas for the coordinated prevention and treatment of postmenopausal osteoporosis and sarcopenia. Methods A total of 171 postmenopausal women who underwent body composition analysis in the First Affiliated Hospital of Sun Yat-sen University from January 2015 to October 2020 were included in this study. According to the whole body BMD and relative skeletal muscle index (RSMI), they were divided into normal group (T-score≥–1 and RSMI>5.45 kg/m2), low muscle mass group (T-score≥–1 and RSMI≤5.45 kg/m2), abnormal bone mass group (T-score<–1 and RSMI>5.45 kg/m2), and low muscle mass / abnormal bone mass group (T-score<–1 and RSMI≤5.45 kg/m2). Univariate analysis was used to compare the differences of general data and body composition among the four groups. Pearson correlation analysis was used to study the correlation between body composition and BMD and RSMI. Multiple linear regression analysis was used to explore the common factors affecting BMD and RSMI. Results Significant differences of body fat (PBF), fat mass (FM), fat mass index (FMI), lean mass (LM), lean mass index (LMI), bone mineral content (BMC), and Android/Gynoid fat ratio and resting metabolic rate (RMR) were found among the four groups (P<0.05). After adjusting for confounding factors, PBF, FM, and FMI were negatively correlated with BMD and RSMI, while LM, LMI, BMC, and RMR were positively correlated with BMD and RSMI. Multiple linear regression analysis showed that high PBF, low LM, and low BMC were common risk factors for BMD and RSMI. Conclusion The changes of BMD and skeletal muscle mass in postmenopausal women are closely related. Intervention measures for the common risk factors may contribute to the coordinated prevention and treatment of postmenopausal osteoporosis and sarcopenia.
查看全文  查看/发表评论  下载PDF阅读器
关闭
function PdfOpen(url){ var win="toolbar=no,location=no,directories=no,status=yes,menubar=yes,scrollbars=yes,resizable=yes"; window.open(url,"",win); } function openWin(url,w,h){ var win="toolbar=no,location=no,directories=no,status=no,menubar=no,scrollbars=yes,resizable=no,width=" + w + ",height=" + h; controlWindow=window.open(url,"",win); } &et=970261AF74811A5D625AFEF2579DA55A9BEDAD3FBD88055898A3BF8D48B2FAF2BC321B01E4A592FEC1A2B9698893ACC15B4FEE138D1BE02DF33C96A010758A5F5E2BB2413E30E54B478862C36B81ABCE851884053074104ADDD8B3C542707B09EEBFA57233B77C42&pcid=A9DB1C13C87CE289EA38239A9433C9DC&cid=527A01A248DACB72&jid=CA678592D11E309E8E3FB3B2BFE9BE1A&yid=885CEFEC57DA488F&aid=D2EE22F6FA6050EBE02778FA1E9F7F3A&vid=&iid=DF92D298D3FF1E6E&sid=85A6AA3FF013E1BF&eid=808D6B9EB5A8B4B4&fileno=202207004&flag=1&is_more=0"> var my_pcid="A9DB1C13C87CE289EA38239A9433C9DC"; var my_cid="527A01A248DACB72"; var my_jid="CA678592D11E309E8E3FB3B2BFE9BE1A"; var my_yid="885CEFEC57DA488F"; var my_aid="D2EE22F6FA6050EBE02778FA1E9F7F3A";