中老年人群骨密度状况的三阶段模型与预测指数
A triple-stage model and predictive index for bone mineral density status in middle-aged and elderly population
  
DOI:10.3969/j.issn.1006-7108.2025.06.011
中文关键词:  骨质疏松  骨量低下  三阶段模型  TOOP指数  OSTA指数
英文关键词:osteoporosis  osteopenia  triple-stage model  TOOP  OSTA
基金项目:黔南民族医学高等专科学校科研基金资助项目(Qnyz202331)
作者单位
智宇熵1 智宇星2,3 陆涛4* 吕廷勇5 刘佳4 杨本琳4 杨海霞6 1. 北京中医药大学第一临床医学院北京100700 2. 北京中医药大学中日友好临床医学院北京100029 3. 北京中医药大学岐黄学院北京100029 4. 贵州省黔南布依族苗族自治州人民医院健康管理(体检)中心贵州 都匀558000 5. 贵州省黔南布依族苗族自治州人民医院医学影像科贵州 都匀558000 6. 贵州省黔南布依族苗族自治州人民医院医学检验科贵州 都匀558000 
摘要点击次数: 20
全文下载次数: 0
中文摘要:
      目的 构建基于健康体检数据的骨密度状况三阶段模型,并在此基础上简化模型参数得到骨质疏松(osteoporosis,OP)与骨量低下(osteopenia,OST)的三阶段预测(triple-stage osteoporosis and osteopenia prediction,TOOP)指数,用于中老年人群骨量异常风险的初筛、预测与评估。方法 回顾性收集2019年1月至2021年12月在黔南州人民医院体检中心完成双能骨密度检查的40岁及以上体检者8 021例,按1:1随机划分为拟合集与验证评估集。利用条件概率原理将三阶段预测问题转化为OP和OST的独立预测问题,并将两者结合构成TOOP指数。采用准确率、灵敏度、特异度、检出率等指标与OSTA指数进行比较验证。结果 性别、年龄和体重是OP的三个主要预测因子,年龄和体重是OST的两个主要预测因子。TOOP指数的预测准确率为0.70(95% CI: 0.68~0.71),高于OSTA指数(P<0.001)。TOOP指数预测OP和OST的灵敏度分别为0.46(95% CI: 0.40~0.53)和0.56(95% CI: 0.53~0.60),均高于OSTA指数(OP:P<0.001,OST:P<0.001);特异度分别为0.96(95% CI: 0.95~0.97)和0.79(95% CI: 0.77~0.81),略低于OSTA指数(OP:P<0.001,OST:P<0.001)。TOOP指数对骨量异常人群的送检率(42.0%)与检出率(32.7%)均高于OSTA指数(P<0.001),漏检率(12.4%)低于OSTA指数(P<0.001)。结论 TOOP指数为中老年人群骨质疏松与骨量低下的风险初筛提供了良好的预测工具。
英文摘要:
      Objective To develop a triple-stage osteoporosis (OP) and osteopenia (OST) prediction model (TOOP) based on health examination data for primary screening and assessment of bone mineral density (BMD) status in middle-aged and elderly population. Methods In this retrospective study, 8021 individuals who were over 40 years old and completed dual-energy X-ray absorptiometry examination were collected in the health management center of People’s Hospital of Qiannan from January 2019 to December 2021, and were 1:1 randomly divided into a fitting dataset and a validation dataset. According to the principle of conditional probability, the triple-stage prediction for BMD status was equally converted into independent prediction on OP and OST. Two prediction indices were then integrated to construct the TOOP index. The accuracy, sensitivity, specificity, and detection rate were used for model validation and further comparison with OSTA index. Results Gender, age, and weight were predictors of OP, and age and weight were predictors of OST. The accuracy of TOOP was 0.70 (95% CI: 0.68-0.71), which was significantly higher than that of OSTA (P<0.001). The sensitivity of TOOP was 0.46 for OP (95% CI: 0.40-0.53) and 0.56 for OST (95% CI: 0.53-0.60), which was significantly higher than those of OSTA (OP: P<0.001, OST: P<0.001). The specificity of TOOP was 0.96 for OP (95% CI: 0.95-0.97) and 0.79 for OST (95% CI: 0.77-0.81), which was slightly lower than those of OSTA (OP: P<0.001, OST: P<0.001). The detection rate (42.0%) and detection rate (32.7%) of TOOP index for people with abnormal bone mass were both higher than OSTA index (P<0.001), and the missed detection rate (12.4%) was lower than OSTA index (P<0.001). Conclusion TOOP index provides a good prediction tool for the risk screening of osteoporosis and osteopenia in middle-aged and elderly people.
查看全文  查看/发表评论  下载PDF阅读器
关闭
function PdfOpen(url){ var win="toolbar=no,location=no,directories=no,status=yes,menubar=yes,scrollbars=yes,resizable=yes"; window.open(url,"",win); } function openWin(url,w,h){ var win="toolbar=no,location=no,directories=no,status=no,menubar=no,scrollbars=yes,resizable=no,width=" + w + ",height=" + h; controlWindow=window.open(url,"",win); } &et=F7F5BB1E502B7057AC0B0F7E7377C5D6507C1485C443A120F79C74BA3E522C7378CCD5A60E32D3B7542706FF0C7FA56AD2A5C30DBF6145AC9087B811B240083E3D4C517BB85EAA515B22C2036C9D39EB39A0E5058993CE4D953EE442CA4190F3D152E35BDAB8ACBFA0BC518F264500C4&pcid=A9DB1C13C87CE289EA38239A9433C9DC&cid=527A01A248DACB72&jid=CA678592D11E309E8E3FB3B2BFE9BE1A&yid=E6A891D2134F30C0&aid=&vid=&iid=B31275AF3241DB2D&sid=8AD9BBE1FAF6BB78&eid=8D95DD1211171525&fileno=20250611&flag=1&is_more=0"> var my_pcid="A9DB1C13C87CE289EA38239A9433C9DC"; var my_cid="527A01A248DACB72"; var my_jid="CA678592D11E309E8E3FB3B2BFE9BE1A"; var my_yid="E6A891D2134F30C0"; var my_aid="";